Table 1. A Simple Gene-Environment Interaction Model in the Context of Epidemiologic Studies | Cohort Study | | | | Case-control study | | | |--------------------------------|----------------------------|-----------------|----------------|--------------------|-----------------|---| | Exposure (1=present, 0=absent) | Susceptibility
Genotype | Disease Risk | Relative Risk | Cases | Controls | Odds Ratio | | 0 | 0 | I | 1 | A ₀₀ | B ₀₀ | 1 | | 0 | 1 | IR_g | R _g | A ₀₁ | B ₀₁ | R _g =A ₀₁ B ₀₀ /A ₀₀ B ₀₁ | | 1 | 0 | IR _e | R _e | A ₁₀ | B ₁₀ | R _e =A ₁₀ B ₀₀ /A ₀₀ B ₁₀ | | 1 | 1 | IR_{ge} | R_{ge} | A ₁₁ | B ₁₁ | R _{ge} =A ₁₁ B ₀₀ /A ₀₀ B ₁₁ | I refers to the background disease risk, incidence of disease among members of the cohort who are not exposed to the environmental factor and who are genotype negative. R_e = disease risk among persons with the exposure without the genotype divided by disease risk among persons with no exposure and no susceptible genotype. R_g = disease risk among persons with the genotype without the exposure divided by disease risk among persons with no exposure and no susceptible genotype. R_{ge}^{g} = disease risk among persons with the exposure and genetype divided by disease risk among persons with no exposure and no susceptible genotype. **Table 2. Six Patterns of Gene-Environment Interaction** | Patterns | Effects on Disease Genotype in absence of environment | Risk of Environment in absence of genotype | |----------|---|--| | 1 | No effect R _g = 1 | No effect R _e = 1 | | 2 | No effect $R_g = 1$ | Increase risk R _e > 1 | | 3 | Increase risk R _g > 1 | No effect $R_e = 1$ | | 4 | Increase risk R _g > 1 | Increase risk R _e > 1 | | 5 | Decrease risk R _g < 1 | No effect $R_e = 1$ | | 6 | Decrease risk R _g < 1 | Increase risk R _e > 1 | Source: Khoury et al. 1993 (24). $R_{\rm e}$ = disease risk among persons with the exposure without the genotype divided by disease risk among persons with no exposure and no susceptible genotype. $R_{\rm g}$ = disease risk among persons with the genotype without the exposure divided by disease risk among persons with no exposure and no susceptible genotype. Table 3. Parameters of Gene-Environment Interaction Analysis in a Case-Control Design Susceptibility Exposure Genotype Controls Odds Ratio Cases (1-g)(1-e) (1-g)(1-e)1.0 3 $g(1-e)R_a$ g(1-e) R_{g} 3 e(1-g)R_e e(1-g) R_{e} 3 geR_{ae} R_{ge} ge 3 e = prevalence of exposure in the population. g = prevalence of genotype in the population. $R_{\rm e}$ = disease risk among persons with the exposure without the genotype divided by disease risk among persons with no exposure and no susceptible genotype. $R_{\rm g}$ = disease risk among persons with the genotype without the exposure divided by disease risk among persons with no exposure and no susceptible genotype. $R_{\rm ge}$ = disease risk among persons with the exposure and genetype divided by disease risk among persons with no exposure and no susceptible genotype. $^{3 = (1-}g)(1-e) + g(1-e)R_q + e(1-g)R_e + geR_{qe}$ Table 4. Characteristics of Case-Only, Case-Parental and Affected Sib-pair Studies | Feature | Case-Only | Case-Parental Control | Affected Relative-Pair | |----------------|--|---|---| | Study subjects | Cases | Cases and their parents | Proband, second case in family, and parents | | 'Controls' | None | Expected genotype distribution based on parental genotypes | Expected distribution of alleles with Mendelian transmission | | Assessment | Departure from multiplicative relationship between exposure and genotype | Association between genotype and disease | Linkage between locus and disease | | Assumptions | Independence between genotype and exposure | Mendelian transmission | Mendelian transmission | | Limitations | Cannot assess effects of exposure on genotype. Linkage disequilibrium. | Requires one or both parents. Cannot assess exposure effects. Linkage disequilibrium. | Need families with 2 or
more cases. Cannot
assess exposure.
Cannot assess specific
alleles. | Source: Khoury, 1997 (1) Table 5. Gene-Environment Interaction Analysis in the Context of a Case-Only Study | Exposure | Susceptibility | Genotype | | |----------|----------------|----------|--| | | - | + | | | | | | | | - | а | b | | | + | С | d | | _____ $$a = ((1-g)(1-e)) / 3$$ $$b = ((1-g)eR_e) / 3$$ $$c = ((1-e)gR_g) / 3$$ R_g = disease risk among persons with the genotype without the exposure divided by disease risk among persons with no exposure and no susceptible genotype. R_{ge} = disease risk among persons with the exposure and genetype divided by disease risk among persons with no exposure and no susceptible genotype. $$3 = (1-g)(1-e) + g(1-e)R_g + e(1-g)R_e + geR_{ge}$$ Under assumption of independence between exposure and genotype among controls: case-only odds ratio (OR_{ca})= ad/bc. OR_{ca} is related to case-control ORs by $OR_{ca} = R_{ae}/(R_e * R_a)$. $d = (geR_{ge}) / 3$ e = prevalence of exposure in the population. g = prevalence of genotype in the population. R_e = disease risk among persons with the exposure without the genotype divided by disease risk among persons with no exposure and no susceptible genotype. Table 6. Case-Control Analysis of the Interaction Between Maternal Cigarette Smoking and Transforming Growth Factor Alpha Polymorphism in Determining Children's Risk for Cleft Palate | Smoking | Taql
Polymorphism | Cases | Controls | Odds
Ratio | 95% C.I. | |---------|----------------------|-------|----------|---------------|----------| | - | - | 36 | 167 | 1.0 | Referent | | - | + | 7 | 34 | 1.0 | 0.3-2.4 | | + | - | 13 | 69 | 0.9 | 0.4-1.8 | | + | + | 13 | 11 | 5.5 | 2.1-14.6 | | | | | | | | Sources: it is derived from Hwang et al. (42). Odds ratio based on a case-only study is 5.1 (95% Cl 1.5-18.5)(36 * 13)/(13 * 7). Table 7. Gene-Environment Interaction Analysis in the Context of a Case-Parental Control Study: Analysis of Nontransmitted Alleles _____ | Exposure status: | Absent | Case ger
S | notype
+ | | |---|-----------|----------------|--------------------------------|--| | Parental non-
transmitted
alleles | - | T ₀ | U_0 | | | alicics | + | V_0 | W_0 | | | OR among unexpose | ed people | 1 | U ₀ /V ₀ | | | Exposure status: Pr | esent | Case genotype | | | |--|-------|----------------|--------------------------------|--| | | | S | + | | | Parental
non-transmitted
alleles | - | T ₁ | U ₁ | | | | + | V_1 | W_1 | | | OR among exposed p | eople | 1 | U ₁ /V ₁ | | Source: Khoury and Flanders, 1996 (34). Table 8. Gene-Environment Interaction Analysis in the Context of an Affected Sib-Pair Study | No. Alleles
ibd with
proband | Unexposed
case | Exposed case | Expected | Odds
Ratio
(unexposed) | Odds
Ratio
(exposed) | |------------------------------------|-------------------|-----------------|----------|---|-----------------------------------| | 0 | A ₀₀ | A ₀₁ | 0.25 | 1.0 | 1.0 | | 1 | A ₁₀ | A ₁₁ | 0.50 | A ₁₀ /2A ₀₀ | A ₁₁ /2A ₀₁ | | 2 | A ₂₀ | A ₂₁ | 0.25 | A ₂₀ /A ₀₀ A ₂₁ /A ₀₁ | | Source: Khoury, 1997 (1).